UK PACE Scheme

Pesticide dose Adjustment to the Crop Environment

Peter Walklate

Research sponsored by the UK Chemical Regulations Directorate

\bullet

- UK Regulators funded SRI & EMR to develop PACE (2001-2005)
 - Based on optimised dose adjustment

Introduction

- Rationale
 - Statutory Label Dose: "Maximum dose per hectare"
 - Became EU law in 2009 (Regulation 1107/2009)
 - Known to waste pesticide for orchard spraying
 - UK Grower Already making dose adjustments
 - Applied Dose = (Dose Adjustment ≤ 1) x (Statutory Label Dose)
- This research needed a good model
 - Dose Adjustment = F (Canopy: Size and Density)
 - Canopy Size Dose Adjustment: AgChem Companies (1990's) Favoured TRV
 - Canopy Density Dose Adjustment:
 - Sutton & Unrath, (1984) Plant Disease/Vol 68

Introduction

- 1st PACE Scheme Roll-out (2005 2007)
 - HDC factsheet 20/05 to help growers use PACE
 - Worked examples of dose adjustment for different pesticides
 - Presentations made to major UK grower groups
 - Grower feed-back:
 - <u>Simplify</u> dose adjustment calculation
 - Because grower make mistakes
 - <u>Complicate</u> dose adjustment calculation
 - Dose scaling rules are not the same for all pesticide types

Introduction

□ PACE × + - □ ×				
← → C ③ Not secure www.pace.pjwrc.co.uk/i ★ 🌚 🗄				
🗰 Apps \star Bookmarks 📃 PACE 💪 Google 🛛 » 📔 Other bookmarks				

About PACE Calculators LiDAR Software Email				
PACE dose adjustment calculator				
1. Set farm reference sprayer for the standard orchard				
standard pome 🔻				
row-spacing 3.5 (m)				
tree-height 3 (m)				
nozzles-open 14 T				
2. Assess the need to spray and select pesticide(s)				
done 🖌				
3. Assess whether dose adjustment is appropriate				
done 🖉				
4. Adjust dose for tree density				
growth-stage pre-blossom ▼ growth-rate mean ▼				
branch-number mid T				
row-spacing 3.5 T (m)				
5. Adjust dose for tree height				
nozzles-open 8 🔻				
tree-height 1.7 (m)				
6. Results				
record New 1 T				
orchard 1 • insert or delete or rename Street				
summary refresh new page				
•				

- PACE calculator webpage (2008-2013)
 - http://www.pace.pjwrc.co.uk
- Include different scaling rules for different pesticides
 - Scab fungicides & products with pre-blossom dose
 - Alignment with LWA scaling
 - Canopy density is less important than canopy size
 - All other pesticides
 - Canopy density & size are both important
 - Walklate & Cross Crop Protection 54 (2013) 65-73
- Grower demo trials (2012 2013)
 - Using PACE webpage calculator

Why is dose adjustment needed?

Dose adjustment is needed to obtain uniform deposit across different structures

Traditional deposit measurements are a very time consuming and expensive way to determine dose adjustment

Possible alternative: LiDAR crop structure measurements

Range Interception Probability Distributions (PACE parameters: height, width, density, etc)

0.005<=p<0.010 0.010<=p<0.020 0.020<=p<0.040 0.040<=p<0.080 0.080<=p<0.160 0.160<=p<0.320 0.320<=p<0.640 0.640<=p<1.000 1.000<=p

LiDAR-PACE dose adjustment model: UK orchards Scab fungicides

pre-blossom

full-leaf

PACE → LWA

PACE

LWA

LiDAR-PACE dose adjustment model: UK orchards "All other products"

(These exclude scab fungicides & products with pre-blossom dose)

pre-blossom

full-leaf

PACE → LWA

PACE > LWA

LiDAR-PACE dose adjustment model: UK orchards "All other products"

Scenario test product re registered (max. label dose is reduced by a factor of 2)

pre-blossom

full-leaf

PACE LWA

PACE > LWA

PACE Dose Adjustment Calculator

Dose adjustment calculator 1. Set reference sprayer (one off process)

- Select the number of open nozzles for spraying the standard/ref orchard with a fully calibrated sprayer
 - Nozzles-open = 14

PACE × + − □ ×				
← → C (i) Not secure www.pace.pjwrc.co.uk/i ★ 🌚 :				
👖 Apps ★ Bookmarks 📙 PACE G Google ᠉ 📃 Other bookmarks				
长卡女子子长书书张 长子				
About PACE Calculators LiDAR Software Email				
PACE dose adjustment calculator				
1. Set farm reference sprayer for the standard orchard				
standard pome 🔻				
row-spacing 3.5 (m)				
tree-height 3 (m)				
nozzles-open 14 T				
2. Assess the need to spray and select pesticide(s)				
done 🖉				
3. Assess whether dose adjustment is appropriate				
done 🖉				
4. Adjust dose for tree density				
growth-stage pre-blossom ▼ growth-rate mean ▼				
branch-number mid 🔻				
row-spacing 3.5 T (m)				
5. Adjust dose for tree height				
nozzles-open 8 🔻				
tree-height 1.7 (m)				
6. Results				
record New 1 T				
orchard 1 • insert or delete or rename Street				
summary refresh new page				

Dose adjustment calculator

4. Adjust dose for tree density

- Select growth-stage
- Select growth-rate model for predictive use
- Select branch-number (see chart below)
- Select row-spacing

PACE	×	+	_	
\leftrightarrow \rightarrow C (i)	Not secure ww	w.pace.pjwrc.co	o.uk/i ★	🌚 :
👖 Apps 🔺 Book	marks 📙 PACE	G Google ») 📙 🔂 Other	bookmarks
*++	まよう		* *	经*
About	PACE Calculators	LiDAR Software	Email	
PACE dose adju	istment calcula	tor	2	
FACE dose adju	Istment calcula			
1. Set farm referen	ce sprayer for the s	standard orchar	d	
standard	pome 🔻			
row-spacing	3.5 (m)			
tree-height	3 (m)			
nozzles-open	14 💌			
2. Assess the need	to spray and selec	ct pesticide(s)		
done	1			
3. Assess whether	dose adjustment is	s appropriate		
done	1			
4. Adjust dose for t	ree density			
growth-stage	pre-blossom	 growth-ra 	te mean	•
branch-number	mid 🔻			
row-spacing	3.5 ▼ (m)			
5. Adjust dose for t	ree height			
nozzles-open	8 🔻			
tree-height	1.7 (m)			
6. Results				
record	New 1 🔻			
orchard	1 T insert or o	delete or renan	ne Street	
summary	refresh new page	•		

Dose adjustment calculator

5. Adjust dose for tree height

- Select number of open nozzles
 - appropriate for target tree height

PACE	× + - □ ×			
) Not secure www.pace.pjwrc.co.uk/I 🗙 🐲 :			
🚺 Apps 🔺 Bool	kmarks 📙 PACE Ġ Google 🛛 » 📔 Other bookmarks			
16.7 8	- 3+ L 2+ L + K - 16 - 1			
AF AF A				
About	t PACE Calculators LiDAR Software Email			
PACE dose adi	iustment calculator			
1. Set farm referer	nce spraver for the standard orchard			
standard	pome V			
row-spacing	3.5 (m)			
tree-height	3 (m)			
nozzles-onen				
2. Assess the neer	d to spray and select pesticide(s)			
done				
3. Assess whether	r dose adjustment is appropriate			
done				
4. Adjust dose for	tree density			
growth-stage	pre-blossom v growth-rate mean v			
branch-number	mid 🔻			
row-spacing	3.5 v (m)			
5. Adjust dose for tree height				
nozzles-open	8 🔻			
tree-height	1.7 (m)			
6. Results				
record	New 1 🔻			
orchard	1 T insert or delete or rename Street			

Dose adjustment calculator 6. Results: Example with post-blossom predictions

N.B. Further pruning may be required "Clover ley" orchard branch density set "high" gives significant under-dose at "full-leaf" with full label dose

Summary

- I've described PACE developments
 - HDC leaflet
 - A more comprehensive approach
 - web-page supported system
- I've shown how LiDAR measurements can be used
 - To improve PACE
 - To quickly record & process orchard structure
 - To examine dose adjustment rules for different pesticides
 - To manage crop density
- Related research is still funded at EMR
 - For precision orchard spraying developments
- PACE funding from UK Regulators ended at EMR in 2013
 - The following issues are key

Issue 1: UK pesticide usage for orchard spraying

Fruit types

- 45% dessert & culinary apples
- 38% cider apples
- 8% pears
- 9% plums, cherries & nuts

Data source:

Pesticide usage survey report 273 Orchards in the UK 2016 FERA

Issue 2: Liability

The End Many thanks for your attention

Key Publications: Early PACE developments

- Origin of spray deposit measurements
 - Cross et al., Crop Protection (2001) 20: 13-30
 - Cross et al., Crop Protection (2001) 20: 333-343
 - Cross et al., Crop Protection (2003) 22: 381-394
- Spray deposit modelling based LiDAR crop structure measurements
 - Walklate et al., Biosystems Engineering (2002) 82 (3): 253-267
 - Walklate et al., Annals of Applied Biology (2003) 143: 11-23
 - Walklate P J & Cross J V. 2005. Horticultural Development Council Published Factsheet 20/05.
 - Walklate et al., Crop Protection (2006) 25: 1080-1086

Key Publications: Additional PACE developments

- Walklate P J, Cross J V, Pergher G. 2011. Support system for efficient dosage of orchard and vineyard spraying products. Computers and Electronics in Agriculture 75: 355-362.
- Walklate P J, Cross J V. 2012. An examination of Leaf-Wall-Area dose expression. Crop Protection 35: 132-134.
- Walklate P J, Cross J V. 2013. Regulated dose adjustment of commercial orchard spraying products. Crop Protection 54: 65-73.
- Walklate P J. 2013. Internet portal for links to all versions of the PACE dose adjustment calculator and associated web pages. <u>http://www.pace.pjwrc.co.uk</u>
- Cross J V, Walklate P J. 2015. PACE into fruit tree spraying practice. SuproFruit. Lindau.